Thank you very much for your precious time and valuable comments. The manuscript has been revised considering yours' and respected reviewers comments. Below we detail our reflections, point-by-point.

Reviewer

In the paper, the authors investigated OFDM based dynamic subcarrier selection schemes for secondary users in cognitive radio networks. They have proposed three techniques namely, Direct, Distributed and Incremental selection. The authors claimed to achieve better SINR with partial channel state information scenario. The paper provides an extensive mathematical model to analyze the outage probability for each of the models. The authors carried out an extensive simulation to understand the performance of the schemes. The distributed scheme provides better fairness regarding providing equal opportunity to all SUs.

1- The current introduction is not sufficient. I think the authors should describe each system in a bit more details along with the challenges.

Response

As per your request, we paid special attention in the revised manuscript to related works and performance comparison. In particular, more details about the techniques discussed in the introduction have been included in the revised paper. We also added a section containing most of the related techniques in the literature.

Furthermore, in addition to the Threshold Based Selection technique [33,34], we also compared the simulated outage performance of the proposed techniques to the Best Channel Selection (BCS) [15] technique and Threshold Best Channel Selection (TBCS) [16] with different interference power guarantee configurations.

Reviewer

2- I would suggest the authors put more mathematics in the Appendix portion, reducing the math in the theory part. This will enhance the readability of the paper.

Response
To improve the readability of the paper, we reduced the length of the manuscript (excluding appendices and bibliographies) from 39 to 32 pages by moving some of the mathematical analysis to the appendix, bypassing straightforward derivations and avoiding redundancy.

Reviewer

3- Since this protocol is a distributed method, I would suggest to carry out a simulation in some well-defined network simulation tool such as ns3.

Response

Network Simulator 3 (Ns3) simulation tool is generally used to evaluate the performance of networking and upper layers techniques and algorithms while our proposed techniques enhance the performance of the physical layer (PHY) algorithms. Also, to be able to compare with existent techniques in the literature and for results conformity, we used the same simulation tool which is Matlab©. In particular, Matlab© is widely used by PHY researchers to evaluate the performance of secondary users allocation schemes [14-21] and interference mitigation techniques [22-25].