Towards a physiologically relevant \textit{in vitro} system for oral drug product delivery in the gastrointestinal (GI) tract

Niloufar Salehi1, Nicholas Job, Meagan Dean, Robert M. Ziff1, Gordon Amidon2, Gregory Amidon2

1 Department of Chemical Engineering, University of Michigan, Ann Arbor, MI.
2 Department of Pharmaceutical Science, University of Michigan, Ann Arbor, MI.

Drug Delivery in GI Tract

What are the important factors in oral drug delivery?
- Permeability.
- Solubility.
- Dose.
- Dissolution

How the critical parameters for human \textit{in vivo} drug dissolution are measured?
- Gastric emptying rate.
- GI tract content.
- GI tract pH.
- GI tract buffer capacity.
- Motility.
...

GI Motility & Hydrodynamics

\textit{in vivo} Mixing
- Peristaltic Waves: progressive wavelike contractions of longitudinal and circular muscles.
- Segmentation Contractions: movement of circular muscles that moves chyme in two directions.

\textit{in vitro} Mixing
- Stirrer: the rotating domain which generates shear rate. However, in common dissolution apparatuses the \textit{in vitro} shear rates are orders of magnitude greater than the \textit{in vivo} shear rates.

Dissolution Vessel: the stationary domain which its shape has an impact on hydrodynamics and particle suspension.

Goal and Methodology

Facts:
- The hydrodynamics conditions influence the convective mass transport.
- Current \textit{in vitro} drug dissolution devices have orders of magnitude higher shear rates than \textit{in vivo} systems.

Goals:
- Design an \textit{in vitro} system for GIS which simulates \textit{in vivo} hydrodynamics conditions.
- Predicting the average shear rate in \textit{in vitro} system by fluid mechanics theories.
- Validating the calculated average shear rates with experiments and mass transport modeling.

Stirrer and Vessel Design

What are the main design goals?
- Vessel design: should minimize the dissolution test variability.

- Stirrer design: should maximize the particle suspension and generate shear rate which is \textit{in vivo} shear rate range.

How to estimate \textit{in vitro} average shear rate?

The answer is with mass transport modeling.

Factors taken into account in mass transport modeling:
- Shear rate
- Drug properties
- Particle size and distribution
- pH stomach, duodenum, jejunum
- Stomach emptying rate
- Buffer pKa and concentration

How accurate is the mass transport model?

Summary & Conclusion

- The hydrodynamics are among the critical factors in determining the drug dissolution rate.
- The hydrodynamics are controllable in \textit{in vitro} system with general system design.
- Mass transport modeling can predict the \textit{in vitro} shear rates and validate the average shear rates which was calculated by CFD simulations.

Acknowledgments

Gordon Amidon would like to acknowledge support from the FDA via grants HHSF223201510157C.

The experimental data and analysis in Figs.10 was found by Nicholas Job and Meagan Dean.

Contact Information

428 Church Street, room 2022
College of Pharmacy
Univ. of Michigan, Ann Arbor

T: (508) 971-6979
E: nilousa@umich.edu